An aflagellate mutant Yersinia enterocolitica biotype 1A strain displays altered invasion of epithelial cells, persistence in macrophages, and cytokine secretion profiles in vitro.

نویسندگان

  • Alan McNally
  • Roberto M La Ragione
  • Angus Best
  • Georgina Manning
  • Diane G Newell
چکیده

Despite being classically defined as non-pathogenic, there is growing evidence that biotype 1A Yersinia enterocolitica isolates may be aetiological agents of disease in humans. In previous studies, a potential link between motility and the ability of biotype 1A strains to invade cultured epithelial cells was observed. In an attempt to further investigate this finding, a flagella mutant was constructed in a human faecal Y. enterocolitica biotype 1A isolate. The flagella mutation abolished the ability of the strain to invade cultured human epithelial cells, although adherence was not affected. The aflagellate mutant was also attenuated in its ability to survive within cultured macrophages, being cleared after 3 h, whilst the wild-type persisted for 24 h after infection. Examination of cytokine secretion by infected macrophages also suggested that the flagella of biotype 1A strains act as anti-inflammatory agents, decreasing production of tumour necrosis factor (TNF)-alpha whilst increasing secretion of interleukin (IL)-10. Preliminary studies using porcine in vitro organ culture (IVOC) tissue suggested that the flagella mutant was also attenuated in its ability to colonize intestinal tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Yersinia enterocolitica biotype 1A strains of diverse origin with cultured cells in vitro.

Yersinia enterocolitica biotype 1A isolates are increasingly being associated with diarrhea. However, the mechanism of their pathogenicity is not well understood. In the present study interaction of Y. enterocolitica isolates with CHO cells, HEp-2 cells and J774 mouse macrophages was studied. Y. enterocolitica biotype 1A strains of clinical origin invaded CHO and HEp-2 cells to a significantly ...

متن کامل

Characterization of the interaction between Yersinia enterocolitica biotype 1A and phagocytes and epithelial cells in vitro.

Yersinia enterocolitica strains of biotype 1A are increasingly being recognized as etiological agents of gastroenteritis. However, the mechanisms by which these bacteria cause disease differ from those of highly invasive, virulence plasmid-bearing Y. enterocolitica strains and are poorly understood. We have investigated several biotype 1A strains of diverse origin for their ability to resist ki...

متن کامل

Yersinia enterocolitica-induced interleukin-8 secretion by human intestinal epithelial cells depends on cell differentiation.

In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the for...

متن کامل

Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence.

Yersinia enterocolitica is an enteric pathogen that consists of six biotypes: 1A, 1B, 2, 3, 4, and 5. Strains of the latter five biotypes can carry a virulence plasmid, known as pYV, and several well-characterized chromosomally encoded virulence determinants. Y. enterocolitica strains of biotype 1A lack the virulence-associated markers of pYV-bearing strains and were once considered to be aviru...

متن کامل

Yersinia enterocolitica inhibits Salmonella enterica serovar Typhimurium and Listeria monocytogenes cellular uptake.

Yersinia enterocolitica biovar 1B employs two type three secretion systems (T3SS), Ysa and Ysc, which inject effector proteins into macrophages to prevent phagocytosis. Conversely, Salmonella enterica serovar Typhimurium uses a T3SS encoded by Salmonella pathogenicity island 1 (SPI1) to actively invade cells that are normally nonphagocytic and a second T3SS encoded by SPI2 to survive within mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 153 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2007